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Initialize

In[10]:= Off[General::"spell1"];
SetOptions[ArrayPlot, ColorFunction → "GrayTones",

DataReversed → True, Frame → False, AspectRatio → Automatic,
Mesh → False, PixelConstrained → True, ImageSize → Small];

Outline

Last time

Bidirectional architectures, primarily focused on object recognition and perception--a presumed 
primary function of ventral visual processing stream. These functions rely on the representation of 
within-object properties.

Today

We will focus on the visual functions that require estimation of depth, with respect to the viewer and 
between objects--a presumed function of the dorsal visual processing stream. These functions rely on 
the representation of viewer-object and object-object relationships. 

Earlier, we developed some photometric and geometric models applied to intrinsic shape (e.g. lamber-
tian model, and local shape in terms of gradient space, and slant and tilt). Here we develop tools 
applicable to the analysis and modeling of large scale spatial structure and trajectories. These tools 
include modeling: rotation, size, translation and perspective. And in the second part, the Kalman filter 
for object tracking.

Computational theory  for estimating relative depth, eye (camera) motion

Particular focus on  computing spatial relationships from motion measurements.



Space: Where are objects? Where is the viewer?
Recall distinctions: Between vs. within object geometry.

Where are objects? A review of cues

Absolute depth

Spatial, timing relationships, distance of objects or scene feature points from the observer. 

"Physiological cues": Binocular convergence--information about the distance between the eyes and 
the angle converged by the eyes. Crude, but constraining. Errors might be expected to be proportional 
to reciprocal distance. Closely related to accommodative (focusing by lens) requirements.

"Pictorial cue"--familiar size. E.g. human adults have an average size and range.

Relative depth

Distance between objects or object feature points. Important for scene layout, planning. 

Processes include: Stereopsis (binocular parallax) and motion parallax. Motion parallax is discussed 
below.

Also information having to do with the "pictorial" cues: occlusion, transparency, perspective, proximity 
luminance, focus blur, also familiar size & "assumed common physical size", "height in picture plane", 
cast shadows, texture & texture gradients for large-scale depth & depth gradients

Examples of pictorial information for depth

Cooperative computation & cue integration

...over a dozen cues to depth. Theories of integration (e.g. stereo + cast shadows). Theories of coopera-
tivity (e.g. motion parallax <=> transparency).
Vision for spatial layout of objects, navigation, heading and for reach

2     28.SpatialLayoutScenes.nb



Tracking

Methods such as Kalman filtering (and its generalizations) can be used to combine prior assumptions 
regarding trajectory models of a single point/object with online updating of noisy measurements over 
long periods of time. These are useful for both dynamic depth relative to viewer and to other objects.

Where am I? Where am I headed?

We’ll see that optic flow can’t specify where the viewer is in absolute terms, but can be used to com-
pute the relative depth relationships between objects, heading direction, and time to contact.

Calculating structure from motion and heading from the 
motion field

Estimation of relative depth and viewer/camera motion: Introduction

Earlier we saw: 
1) how local motion measurements constrain estimates of optic flow, and thus the motion field.
2) how a priori slowness and smoothness constraints constrain dense and sparse estimates of the 

flow field (e.g. Weiss et al.).

How can we use an estimate of the motion field to estimate useful information for navigation--such as 
relative depth, observer motion, and time to collision? And all in an instant!

Goals

Estimate relative depth of points in a scene, the viewer’s motion from the motion field,  and the view-
er’s time-to-contact with a surface. Visual computations provide an “understanding” of the environ-
ment from the moving images on our retinas. 

There are approaches to structure from motion that are not based directly on a dense motion field, but 
rather based on a sequence of images in which a discrete set of corresponding points have been identi-
fied (Ullman, S., 1979; Dickmanns). A major challenge is to track the corresponding points. 

Alternatively, suppose we have estimated the optic flow at time t, and assume it is a good estimate of 
the motion field--what can we do with it?  Imagine the observer is flying through the environment. The 
flow field should be rich with information regarding direction of heading, time-to-contact, and relative 
depth (Gibson, 1957). 

In this section we study the computational theory for the estimation of relative depth, and viewer/cam-
era heading from the optic flow pattern induced by general eye motion in a rigid environment.  We 
follow a development described by Longuet-Higgins, H. C., & Prazdny, K. (1980). (See also Koenderink 
and van Doorn, 1976, Horn, Chapter 17, Perrone, 1992 for a biologically motivated model, and Heeger 
and Jepson, 1990).
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Estimate relative depth of points in a scene, the viewer’s motion from the motion field,  and the view-
er’s time-to-contact with a surface. Visual computations provide an “understanding” of the environ-
ment from the moving images on our retinas. 

There are approaches to structure from motion that are not based directly on a dense motion field, but 
rather based on a sequence of images in which a discrete set of corresponding points have been identi-
fied (Ullman, S., 1979; Dickmanns). A major challenge is to track the corresponding points. 

Alternatively, suppose we have estimated the optic flow at time t, and assume it is a good estimate of 
the motion field--what can we do with it?  Imagine the observer is flying through the environment. The 
flow field should be rich with information regarding direction of heading, time-to-contact, and relative 
depth (Gibson, 1957). 

In this section we study the computational theory for the estimation of relative depth, and viewer/cam-
era heading from the optic flow pattern induced by general eye motion in a rigid environment.  We 
follow a development described by Longuet-Higgins, H. C., & Prazdny, K. (1980). (See also Koenderink 
and van Doorn, 1976, Horn, Chapter 17, Perrone, 1992 for a biologically motivated model, and Heeger 
and Jepson, 1990).

Rather than following the particular derivation of Longuet-Higgins et al., we derive the relationship 
between the motion field and relative depth, and camera motion parameters using homogeneous 
coordinates. See: https://en.wikipedia.org/wiki/Transformation_matrix and https://en.wikipedia.org/wi-
ki/Homogeneous_coordinates#Use _in _computer _graphics.

Setting up the frame of reference and basic variables

Imagine a rigid coordinate system attached to the eye, with the origin at the nodal point. General 
motion of the eye can be described by the instantaneous translational (U,V,W) and rotational (A,B,C) 
components of the frame. Let P be a fixed point in the world at (X,Y,Z) that projects to point (x,y) in the 
conjugate image plane which is unit distance in the z direction from the origin:

Goal 1: Derive a generative (forward) model of the motion field, where we 
express the motion field (u,v) in terms of Z, U,V,W,A,B,C.

This generative model is strictly geometric. 

Homogeneous coordinates

First we’ll review homogeneous coordinates -- a cool mathematical trick for computing rigid 3D 
motions and perspective projection. And a tool fundamental to modern computer graphics software 
and hardware.

Rotation and scaling can be done by linear matrix operations in three-space. But translation and 
perspective transformations (3D to 2D) do not have a three dimensional matrix representation. By 
going from three dimensions to four dimensional homogeneous coordinates, all four of the basic 
operations, rotation, scaling, translation and perspective projection, can be represented using the 
formalism of matrix multiplication. 

Homogeneous coordinates are defined by products of the coordinates with a scalar w: {xw,   yw,   zw,  w 
}, (w not equal to 0). To get from homogeneous coordinates to three-space coordinates, {x,y,z}, divide 
the first three homogeneous coordinates by the fourth, {w}. And to get started, one takes the 3D vector 
representing the location of a point in 3D and simply appends a 1 to the fourth slot.

Rotation and translation matrices can be used to describe object or eye-point changes of orientation 
and position.  The scaling matrix allows you to squash or expand objects in any of the three directions. 
Any combination of the matrices can be  concatenated through multiplication. 

Note: Matrices do not in general commute when multiplying, so the order is important. The translation, 
rotation, and perspective transformation matrices can be concatenated to describe  general 3-D to 2-D 
perspective mappings.
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First we’ll review homogeneous coordinates -- a cool mathematical trick for computing rigid 3D 
motions and perspective projection. And a tool fundamental to modern computer graphics software 
and hardware.

Rotation and scaling can be done by linear matrix operations in three-space. But translation and 
perspective transformations (3D to 2D) do not have a three dimensional matrix representation. By 
going from three dimensions to four dimensional homogeneous coordinates, all four of the basic 
operations, rotation, scaling, translation and perspective projection, can be represented using the 
formalism of matrix multiplication. 

Homogeneous coordinates are defined by products of the coordinates with a scalar w: {xw,   yw,   zw,  w 
}, (w not equal to 0). To get from homogeneous coordinates to three-space coordinates, {x,y,z}, divide 
the first three homogeneous coordinates by the fourth, {w}. And to get started, one takes the 3D vector 
representing the location of a point in 3D and simply appends a 1 to the fourth slot.

Rotation and translation matrices can be used to describe object or eye-point changes of orientation 
and position.  The scaling matrix allows you to squash or expand objects in any of the three directions. 
Any combination of the matrices can be  concatenated through multiplication. 

Note: Matrices do not in general commute when multiplying, so the order is important. The translation, 
rotation, and perspective transformation matrices can be concatenated to describe  general 3-D to 2-D 
perspective mappings.

The 4D matrices for: rotation, scaling, translation and projection.

In[12]:= Clear[x, y, z];

In[13]:= XRotationMatrix[theta_] := {{1, 0, 0, 0},
{0, Cos[theta], Sin[theta], 0}, {0, -Sin[theta], Cos[theta], 0}, {0, 0, 0, 1}};

YRotationMatrix[theta_] := {{Cos[theta], 0, -Sin[theta], 0},
{0, 1, 0, 0}, {Sin[theta], 0, Cos[theta], 0}, {0, 0, 0, 1}};

ZRotationMatrix[theta_] := {{Cos[theta], Sin[theta], 0, 0},
{-Sin[theta], Cos[theta], 0, 0}, {0, 0, 1, 0}, {0, 0, 0, 1}};

ScaleMatrix[sx_, sy_, sz_] := {{sx, 0, 0, 0}, {0, sy, 0, 0}, {0, 0, sz, 0}, {0, 0, 0, 1}};
TranslateMatrix[x_, y_, z_] := {{1, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, 1, 0}, {x, y, z, 1}};
ZProjectMatrix[focal_] :=

{1, 0, 0, 0}, {0, 1, 0, 0}, 0, 0, 0, -N
1

focal
, {0, 0, 0, 1};

ZOrthographic[vec_] := Take[vec, 2];
ThreeDToHomogeneous[vec_] := Append[vec, 1];

HomogeneousToThreeD[vec_] := Drop
vec

vec〚4〛
, -1;

There are three matrices for general rotation:

Rotation about the z-axis,  (moving the positive x-axis towards the positive y-axis)
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In[22]:= ZRotationMatrix[θ] // MatrixForm
Out[22]//MatrixForm=

Cos[θ] Sin[θ] 0 0
-Sin[θ] Cos[θ] 0 0

0 0 1 0
0 0 0 1

x-axis (moving the positive y towards the positive z)

In[23]:= XRotationMatrix[θ] // MatrixForm
Out[23]//MatrixForm=

1 0 0 0
0 Cos[θ] Sin[θ] 0
0 -Sin[θ] Cos[θ] 0
0 0 0 1

y-axis (moving positive z towards positive x):

In[24]:= YRotationMatrix[θ] // MatrixForm
Out[24]//MatrixForm=

Cos[θ] 0 -Sin[θ] 0
0 1 0 0

Sin[θ] 0 Cos[θ] 0
0 0 0 1

The scaling matrix is:

In[25]:= ScaleMatrixsx, sy, sz // MatrixForm
Out[25]//MatrixForm=

sx 0 0 0
0 sy 0 0
0 0 sz 0
0 0 0 1

Translation by {d_x, d_y, d_z} is done by applying the matrix:

In[26]:= Clear[x, y, z, d];
TranslateMatrixdx, dy, dz // MatrixForm

Out[27]//MatrixForm=

1 0 0 0
0 1 0 0
0 0 1 0
dx dy dz 1

In[28]:= {x, y, z, 1}.TranslateMatrixdx, dy, dz

Out[28]= x + dx, y + dy, z + dz, 1

to {x,y,z,1}

▶  1. Show that
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Perspective projection

Perspective transformation is the only homogeneous coordinate matrix operation that requires extract-
ing the three-space coordinates by dividing the homogeneous coordinates by the fourth component w.  
The projection plane is the x-y plane, and the focal point is at z = d.  

Then  {x,  y,   z,  1 }  maps onto  {x, y, 0,  -z/d + 1 } by the following transformation:

In[29]:= Clear[d]
ZProjectMatrix[d] // MatrixForm

Out[30]//MatrixForm=

1 0 0 0
0 1 0 0

0 0 0 - 1
d

0 0 0 1

After normalization, the image coordinates {x',y',z'} are read from:

The steps can be seen here:

In[31]:= Clear[x, y, z, d]
{x, y, z, 1}.ZProjectMatrix[d]
{x, y, z, 1}.ZProjectMatrix[d] / %[[4]]
HomogeneousToThreeD[{x, y, z, 1}.ZProjectMatrix[d]]
Simplify[ZOrthographic[HomogeneousToThreeD[{x, y, z, 1}.ZProjectMatrix[d]]]]

Out[32]= x, y, 0, 1 -
z

d


Out[33]= 
x

1 - z
d

,
y

1 - z
d

, 0, 1

Out[34]= 
x

1 - z
d

,
y

1 - z
d

, 0

Out[35]= 
d x

d - z
,

d y

d - z


The matrix for orthographic projection has d→ infinity. 
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In[36]:= Clear[x, y, z, d]

Limit
d x

d - z
,

d y

d - z
, d → ∞

Out[37]= {x, y}

The perspective transformation is the only (always) singular matrix in the above group.This means that, 
unlike the others its operation is not invertible. This makes sense--given the 2D image coordinates, the 
original 3D scene points cannot be determined uniquely.

Note that there are different expressions for the perspective transformation depending on where one 
puts the x-y plane and the focal point. E.g. whether the x-y image plane is in front --the conjugate 
plane-- or behind the focal point, whether it is at the origin, or whether the focal point is at the origin.

Express velocity V of world point P,  (X,Y,Z) in terms of motion parameters of the 
eye (or camera) frame of reference

We’ll use capital letters to represent the 3D Cartesian coordinates of point P.

Let r(t) represent the position of P in homogeneous coordinates:

r (t) = (X, Y, Z, 1)

An instant later, the new coordinates are given by:

r (t + Δt) = r + Δr = (X + ΔX, Y + ΔY, Z + ΔZ, 1) = r · ΔRθx · ΔRθy · ΔRθz · ΔT

where we assume that the position at time t+Δt is the combination of small rotations and a translation 
in 3D. (NOTE: T represents translation, and t, time.) Small (or infinitesimal) rotations and translations 
are represented by their respective 4x4 matrices. While matrix multiplication operations do not in 
general commute, for infinitesimal rotations, the order doesn’t matter. So we are not committing 
ourselves to a particular sequence of rotations about the X,Y,Z axes. 

Using homogeneous coordinate representations, we have:

and

where we’ve used the small angle approximations for sine and cosine.  We use similar approximations 
for the other rotation matrices, and the relation

Δr = r · ΔRθx · ΔRθy · ΔRθz · ΔT -r.I

where I is the identity matrix. With some manipulation, one can arrive at:
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Δr =

{ΔX, ΔY, ΔZ, 0} = {X, Y, Z, 1}.

0 -Δθz Δθy 0
Δθz 0 -Δθx 0
-Δθy Δθx 0 0
-Δx0 -Δy0 -Δz0 0

+ higher order terms

From this result we can derive expressions that describe the 3D velocity of P in the image-plane coordi-
nates of the viewer/camera or retina.

▶  2. Use Mathematica to derive this formula 

Recall the Series[] function:

In[38]:= ??Series

Series[ f , {x, x0, n}] generates a power series expansion for f about the point x = x0 to order (x - x0)n.

Series f , {x, x0, nx}, y, y0, ny, … successively finds series expansions with respect to x, then y, etc.  0

AttributesSeries = Protected

OptionsSeries := Analytic → True, Assumptions ⧴ $Assumptions

Expand the rotation matrix into a Taylor series:

In[39]:= Series[XRotationMatrix[Subscript[Δθ, x]], {Subscript[Δθ, x], 0, 1}] // MatrixForm
Out[39]//MatrixForm=

1 0 0 0
0 1 + O[Δθx]2 Δθx + O[Δθx]2 0
0 -Δθx + O[Δθx]2 1 + O[Δθx]2 0
0 0 0 1

Use Normal[] to chop off higher order terms:

In[40]:= Normal[Series[XRotationMatrix[Subscript[Δθ, x]], {Subscript[Δθ, x], 0, 1}]] //

MatrixForm
Out[40]//MatrixForm=

1 0 0 0
0 1 Δθx 0
0 -Δθx 1 0
0 0 0 1

Translational matrix is:

In[41]:= TranslateMatrix[-Subscript[Δx, 0],
-Subscript[Δy, 0], -Subscript[Δz, 0]] // MatrixForm

Out[41]//MatrixForm=

1 0 0 0
0 1 0 0
0 0 1 0

-Δx0 -Δy0 -Δz0 1
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Now let's put all the rotation and translational components together. 

In[42]:= Normal[
Series[TranslateMatrix[-Subscript[Δx, 0], -Subscript[Δy, 0], -Subscript[Δz, 0]].

XRotationMatrix[Subscript[Δθ, x]], {Subscript[Δθ, x], 0, 1}].
Series[YRotationMatrix[Subscript[Δθ, y]], {Subscript[Δθ, y], 0, 1}].
Series[ZRotationMatrix[Subscript[Δθ, z]], {Subscript[Δθ, z], 0, 1}]] -

IdentityMatrix[4] // MatrixForm
Out[42]//MatrixForm=

0 Δθz
Δθx Δθy - Δθz Δθx Δθy Δθz
Δθy + Δθx Δθz -Δθx + Δθy Δθz

-Δx0 - Δz0 Δθy + Δy0 Δθz + Δθx -Δy0 Δθy - Δz0 Δθz -Δy0 - Δx0 Δθz - Δz0 Δθy Δθz + Δθx Δz0 - Δy0 Δθy

Ignore the contributions of all second-order terms. For tiny values of Δx0, Δθx, etc., their products are 
even tinier, so set them to zero:

In[43]:= {X, Y, Z, 1}.

0 -Δθz Δθy 0
Δθz 0 -Δθx 0
-Δθy Δθx 0 0
-Δx0 -Δy0 -Δz0 0

// MatrixForm

Out[43]//MatrixForm=

-Δx0 - Z Δθy + Y Δθz
-Δy0 + Z Δθx - X Δθz
-Δz0 - Y Δθx + X Δθy

0

..or writing the vector relation out in list form:

{ΔX, ΔY, ΔZ, 0} ~ -Δx0 - Z Δθy + Y Δθz, -Δy0 + Z Δθx - X Δθz, -Δz0 - Y Δθx + X Δθy, 0

The velocity of P, i.e. V= (dX/dt, dY/dt, and dZ/dt) can be obtained by dividing throughout by Δt:
ΔX

Δt
=

Δθz

Δt
Y -

Δθy

Δt
Z -

Δx0
Δt

= CY - BZ - U

ΔY

Δt
= -

Δy0
Δt

-
Δθz

Δt
X -

Δθx

Δt
Z = -V - CX + AZ

ΔZ

Δt
= -

Δz0
Δt

-
Δθx

Δt
Y -

Δθz

Δt
X = -W - AY + BX

We use {U,V,W} and {A,B,C} to represent the separate translational and rotational components of 
velocity.

NOTE:  The lower case Δx0, Δy0, Δz0 represent changes in the 3D world coordinates {X,Y,Z} due to the 

small translation, ΔT, and have 0 subscripts  to distinguish them from the image-plane values, x and y 
used below. There we use {x,y} to represent the projection of {X,Y,Z} on the image plane.

10     28.SpatialLayoutScenes.nb



▶  3. Show that the vector, {dX/dt, dY/dt, dZ/dt}, describing the velocity of world point P can be neatly 
summarized using the vector cross product:

We replace C by CC, because C is protected in Mathematica.

In[44]:= Clear[U, V, W, A, B, CC, X, Y, Z]
t = {U, V, W};
ω = {A, B, CC};
r = {X, Y, Z};

-Cross[ω, r] - t // MatrixForm
Out[48]//MatrixForm=

-U + CC Y - B Z
-V - CC X + A Z
-W + B X - A Y

In summary, we have:

X
•

Y
•

Z
•

=

dX
dt
dY
dt
dZ
dt

=
-B Z + CC Y - U
A Z - CC X - V
-A Y + B X - W

(1)

To simplify notation, we will use the “dot” convention to indicate the temporal derivatives of X,Y, and Z.

So far so good. We have described the velocity of P in world coordinates in terms of the rotational and 
translational velocity components of the moving coordinate system of the eye (or camera). What is 
happening in the image--i.e. to the motion field or optic flow?

Next step: Relate P velocity and depth Z to the motion field, {u,v} = {dx/dt, dy/dt}

(light travels in straight lines, and so should the projected line in the figure above! )

For convenience, let’s assume the image plane is at f=1, and the nodal point of the eye at the origin. 
The perspective projection is:
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{x, y} = 
X

Z
,
Y

Z


and the motion field in terms of Z, and using the product rule for differentiation, the rates of change of 
X,Y, and Z are:

u =
dx

dt
= x9 =

X
9

Z
-
X Z
9

Z2
(2)

v =
dy

dt
= y9 =

Y
9

Z
-
Y Z
9

Z2
(3)

▶  4. Show that this is the same result as in Lecture 18, relating the velocity v0 of point P (r = r 0), to image 
velocity vi :

r0 = {X, Y, Z}
v0 = X

9
, Y
9
, Z
9


z = {0, 0, 1}

In[49]:= CrossCross{X, Y, Z}, X
•
, Y

•
, Z

•
, {0, 0, 1}  ({X, Y, Z}.{0, 0, 1})^2;

Drop[%, -1] // Expand

Out[50]= 
X
•

Z
-
X Z

•

Z2
,
Y
•

Z
-
Y Z

•

Z2


Main result for goal 1,  the generative model:

Substituting the expressions for the rate of change of X,Y, and Z (equation 1)  in equations 2 and 3, we 
have: 

u =
-U + Wx

Z
+ -B + Cy + Axy - Bx2 = uT + uR (4)

v =
-V + Wy

Z
+ -Cx + A + Ay2 - Bxy = vT + vR (5)

Note that we have organized the terms on the right of each equation so that the first parts do not 
depend on A,B, or C--that is 

uT =
-U + Wx

Z

is a purely translational component. The second term in brackets is purely rotational, and does not 
depend on Z:

uR = -B + Cy + Axy - Bx2

The figure on the left below shows a flow field one would expect from a purely translational motion--
there is a center of expansion (which could be off a finite image plane). The right panel shows the flow 
pattern of a rotational field. Flow fields for the general case are demonstrated below.
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The figure on the left below shows a flow field one would expect from a purely translational motion--
there is a center of expansion (which could be off a finite image plane). The right panel shows the flow 
pattern of a rotational field. Flow fields for the general case are demonstrated below.

▶  5. Equation for the optic flow field. Show that the above equations can be summarized in the following 
matrix equation:

uu(x,y) = p(x,y)AA(x,y).t + BB(x,y).ω

where uu = (u,v), p(x,y) = 1/Z(x,y),   t= (U,V,W),  ω = (A,B,CC). 

AA =
-1 0 x
0 -1 y , BB = 

x y -1 - x2 y
1 + y2 -x y -x

(We replace C by CC, because C is protected in Mathematica.) We can verify that the matrix equation 
gives the solution we derived:

In[51]:= Clear[A, B, CC, U, V, W, X, Y, Z];
AA[x_, y_] := {{-f, 0, x}, {0, -f, y}}
BB[x_, y_] := {{(x * y) / f, -(f + x^2) / f, y}, {f + y^2 / f, -(x * y) / f, -x}}
uu[x_, y_] := (1 / Z) * AA[x, y].{U, V, W} + BB[x, y].{A, B, CC}

In[55]:= f = 1;
uu[x, y] // MatrixForm

Out[56]//MatrixForm=

B -1 - x2 + CC y + A x y + -U+W x
Z

-CC x - B x y + A 1 + y2 +
-V+W y

Z

Demo of motion field for movement over a planar surface

Let's plot the motion field for a planar surface, such as for motion over the ground plane. The equation 
for a plane in camera coordinates can be written:

Z = aX + bY + Z0

Substituting from x = f X/Z, y = f Y/Z,
we get

Z(x,y) = f Z0

f-ax-by

We can use this to define a function p(x,y) =1/Z:
p[x_, y_] := (1/Z0) - (a/(f*Z0))*x - (b/(f*Z0)) y
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In[57]:= Clear[A, B, CC, U, V, W, X, Y, Z, uu, p];

p[x_, y_] := (1 / Z0) - (a / (f * Z0)) * x - (b / (f * Z0)) y
a = 0; b = 1.0; f = 1.0; Z0 = -1;

AA[x_, y_] := {{-f, 0, x}, {0, -f, y}}
BB[x_, y_] := {{(x * y) / f, -(f + x^2) / f, y}, {f + y^2 / f, -(x * y) / f, -x}}
uu2[x_, y_] := p[x, y] * AA[x, y].{U, V, W} + BB[x, y].{A, B, CC}

In[63]:= A = 0; B = 0; CC = -2;
U = 0; V = 0; W = 0;
Manipulate[
VectorPlot[If[y < 1, p[x, y] * AA[x, y].{U, V, W} + BB[x, y].{A, B, CC}, {0, 0}],
{x, -10, 10}, {y, -10, 5}, VectorScale → .1], {{W, 20}, 0, 50}, {{U, 0}, -500, 500},

{V, -100, 50}, {{A, 0.0, "Rotation about X axis"}, -300, 300, 10}]

Out[65]=

W

U

V

Rotation about X axis

-10 -5 0 5 10

-10

-5

0

5

With the rotation about the X axis set to zero (A=0), observe how changing the camera translational 
vector elements (U,V,W) changes the field singularity corresponding to the focus of expansion. The 
focus of expansion indicates the direction of heading.

Now while leaving the (U,V,W) fixed, introduce a non-zero rotation (e.g. A>0). Notice how the focus of 
expansion moves. The focus no longer corresponds to the direction of heading.
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With the rotation about the X axis set to zero (A=0), observe how changing the camera translational 
vector elements (U,V,W) changes the field singularity corresponding to the focus of expansion. The 
focus of expansion indicates the direction of heading.

Now while leaving the (U,V,W) fixed, introduce a non-zero rotation (e.g. A>0). Notice how the focus of 
expansion moves. The focus no longer corresponds to the direction of heading.

Goal 2: Inference model: given (u,v), how can we obtain estimates of 
A,B,C,U,V,W,Z?

In general we can't obtain all seven unknowns (see Horn's book, chap. 17). One problem is that scaling 
Z by a constant, can be exactly compensated for by a reciprocal scaling of (U,V,W) yielding an 
unchanged motion field. See equations 4 and 5.

In other words, a given motion flow on your retina could be due to fast movement through a bigger world, 
or slower movement through a smaller world.

Horn discusses least squares solutions for the direction of camera motion, and for its rotational compo-
nent. See also Heeger and Jepson (1990). Although one can use Bayesian methods for the insufficiently 
constrained problem of estimating any  or all of the seven unknowns, let's see what we can conclude 
with simple algebra to get movement direction (not speed) and relative depth (not absolute depth). We 
follow the original work of Longuet-Higgins et al. (1980)   for estimating the camera direction, and 
relative depth. (See biographical information  about Longuet-Higgins.)

Pure translation: Obtaining direction of heading and relative depth

Suppose  the rotational component is zero. Then measurements of the motion field will give us the 
translational components. These components constrain U,V,W, and Z at each point (x,y) in the conju-
gate image plane.

uT =
-U + Wx

Z

vT =
-V + Wy

Z

Combine these two equations to eliminate Z:

y -
V

W
= x -

U

W

vT
uT

This equation is a straight line whose slope is determined by the ratio of the vertical and horizontal 
components of the flow field (vT uT) , and which passes through the point (U/W,V/W). This point 

depends only on the camera's translational velocity, so other motion flow field lines with different 
ratios of  vertical and horizontal components (vT2 uT2) of the flow also pass through this point. 

The point (U/W,V/W) is  the focus of expansion.  
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This equation is a straight line whose slope is determined by the ratio of the vertical and horizontal 
components of the flow field (vT uT) , and which passes through the point (U/W,V/W). This point 

depends only on the camera's translational velocity, so other motion flow field lines with different 
ratios of  vertical and horizontal components (vT2 uT2) of the flow also pass through this point. 

The point (U/W,V/W) is  the focus of expansion.  

(Notation note: the ratios VT/UT  in the figure above correspond to vT/uT  in the equations. And super-
script and subscripted u’s and v’s are the same.)

Two motion field lines determine the focus of expansion, (U/W,V/W), and thus the camera's transla-
tional direction:
(U, V, W)

U2 + V2 + W2
=

(U / W, V / W, 1)

U2  W2 + V2  W2 + 1
(6)

We can also obtain an estimate of the relative depth of points:
Z

W
=

x - U / W

uT
=
y - V / W

vT
(7)

Pure rotation

As we noted above, when the camera has zero translational velocity, the motion field does not depend 
on the depth structure of the scene. The field is a quadratic function of image position.

General motion field: Estimate both rotation and translational components using 
points of occlusion to get Z, the depth structure

What if we have a mix of translation and rotation? One solution suggested by Longuet-Higgins and 
Prazdny is to make use of motion parallax, where we have two 3D  points that project to the same 
conjugate image point.
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In general, these two points will have different motion field vectors at this image point. 
For example, consider two smooth surfaces at different depths. For smooth surfaces the optic flow field 
will be relatively smooth; however, at points of occlusion, the optic flow field will be discontinuous.

If we take the difference between the optic flow vectors long a line from the nodal point to points at 
different depths, we have:

u1 - u2 = (-U + xW)
1

Z1
-

1

Z2

v1 - v2 = (-V + yW)
1

Z1
-

1

Z2

y -
V

W
=

v1 - v2
u1 - u2

x -
U

W

Similar to before, finding the focus of expansion (xo,yo),  involves finding at least two motion parallax 
pairs,

which will then give us the camera (or eye) direction

▶  6. Find relative depths of points for the general case of translation plus rotation. We need to know 
A,B,C:
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These relations provide sufficient information to calculate A,B,C (from two or more points). A,B,C in 
turn determine uR and vR. 

With some rearrangement, we can obtain a formula for relative depth:

Although we won't cover the results here, a potentially important form of information for relative 
depth, camera motion, and time-to-contact comes from an analysis of the flow patterns generated by 
textured surfaces (Koenderink, J. J., & van Doorn, A. J., 1976) and the above cited article by Longuet-
Higgins and Prazdny. The idea is to compute estimates of the rotation, dilation, and shear of the 
motion field. 

▶  7. Time-to-contact

Show that the reciprocal of the temporal rate of expansion of an object heading directly towards you is 
equal to the time to contact. (Lee and Reddish, 1981).
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Heading experiments

Structure from motion: Psychophysics

While it seems intuitive that direction of heading could be extracted from the focus of expansion given 
camera/eye translation, it isn’t so clear in the general case that includes rotation, where the focus of 
expansion no longer points to direction of heading.

Warren and Hannon (1988) provided the first compelling evidence that the human visual system could 
compensate for eye rotation from purely optical information.  Royden, Banks & Crowell (1992) later 
pointed out the role of proprioceptive information in heading computation, especially for faster 
motions.

Structure from motion: Physiology

For a possible neurophysiological basis for derivative measurements of flow (e.g. rotation, dilation, 
shear), see: (Saito, H.-A., Yukie, M., Tanaka, K., Hikosaka, K., Fukada, Y., & Iwai, E., 1986). For work 
relating to eye movement compensation in optic flow and heading, See Bradley et al. (1996) and Duffy 
(2000).

Challenges to computing structure from motion

Multiple motions, transparency

In general, the environment has multiple moving objects in addition to ourselves--imagine driving a 
car. 

If one wants to compute direction of heading, an optimal solution requires separating out the compo-
nents of flow that do not belong to the rigid background--a segmentation problem. Another segmenta-
tion problem arises in depth from cast shadows, which we’ve seen before. 

Computing motion can involve complex surface relationships, such as near bushes in front of a distant 
set of houses. One approach to dealing with multiple surfaces is to assume the flow field arises from a 
discrete set of layers, and estimate flow parameters within each. See Jepson and Black.

There has also been considerable work in computer vision to solve the problem of tracking, e.g. multi-
ple pedestrians. Below, we describe the Kalman filter approach to tracking. We don't yet have a com-
plete picture of how the human visual system copes with multiple motions when determining scene 
structure, direction of heading, or time to contact. 
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Empirical work

For more information, see early work by Royden, Banks, Warren, Crowell and others. There is a substan-
tial literature  on the neural basis of optic flow computations and their functions. For a review see: 
Wurtz, R. H. (1998). Optic flow: A brain region devoted to optic flow analysis? Curr Biol, 8(16), R554-556.

For ideas on neural coding, see: Zemel, R. S., & Sejnowski, T. J. (1998). A model for encoding multiple 
object motions and self-motion in area MST of primate visual cortex. J Neurosci, 18(1), 531-547.

Depth from viewer

For some combined behavioral and computational modeling work on computing depth from the 
viewer see: Interception and time-to-contact when the object is not directly approaching the viewer. 
See Battaglia et al. (2005; 2011). Cue integration: Shadow displacement & size change for depth. Frame 
of reference issues in cue integration. (Schrater and Kersten, 2000.)

Tracking

Kalman Filter notes

Kalman filter demo

Initializations

In[66]:= sw0 = 10.0;
Q = DiagonalMatrix[{sw0, sw0, .2 * sw0, .2 * sw0}];
ndistw = MultinormalDistribution[{0, 0, 0, 0}, Q];
w := RandomReal[ndistw];

sv0 = 250.0;
R0 = {{sv0, 0.0}, {0.0, sv0}};
ndistv = MultinormalDistribution[{0, 0}, R0];
v := RandomReal[ndistv];

Generate synthetic data: Model true trajectory plus noise

Initialize and generate

In[74]:= iter = 100;
y0 = {.0, 0.0, .1, .1};
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In[76]:= A = {{1, 0, 1, 0}, {0, 1, 0, 1}, {0, 0, 1, 0}, {0, 0, 0, 1}};
H = {{1, 0, 0, 0}, {0, 1, 0, 0}};

In[78]:= y[k_] := A.k + w
ys = NestList[y, y0, iter - 1];
x = H.# & /@ ys + RandomReal[ndistv, iter];

True path

In[81]:= g2 = ListPlot[H.# & /@ ys, Joined → True]

Out[81]=
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Noisy measurements 

In[82]:= g1 = ListPlot[x]

Out[82]=
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Estimate path from data

Initialize arrays

In[83]:= yh = Table[{0, 0, 0, 0}, {iter}];
K = Table[{{0, 0}, {0, 0}, {0, 0}, {0, 0}}, {iter}];
P = Table[DiagonalMatrix[{0, 0, 0, 0}], {iter}];
Pm = P;
yhp = yh;

Initial estimates

In[88]:=

R = 100 R0; (* Change measurement noise assumption. If R is small,
then the data is trusted--the dots get joined. If the
data is believed to be noisy, the state estimate is smoothed *)

Graph here gets dynamically updated when the Kalman fiter section below is 
evaluated

The path moves from right to left. 

In[89]:= Dynamic[gxys = ListPlot[{x, H.# & /@ ys, H.# & /@ yhp}, Joined → {False, True, True}]]

Out[89]=
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Kalman filter

In[90]:= Fort = 1, t < iter, t++,

(*Time update--predict the state and error covariance *)

yh[[t + 1]] = A.yhp[[t]];
Pm[[t + 1]] = A.P[[t]].Transpose[A] + Q;

(*Measurement update--correction*)
K[[t + 1]] = Pm[[t + 1]].H@.InverseH.Pm[[t + 1]].H@ + R;

P[[t + 1]] = (IdentityMatrix[4] - K[[t + 1]].H).Pm[[t + 1]];

yhp[[t + 1]] = yh[[t + 1]] + K[[t + 1]].(x[[t + 1]] - H.yh[[t + 1]]);
(*gxys=ListPlot[{x,H.#&/@ys,H.#&/@yhp},Joined→{False,True,True}];*)
Pause[.05];

;

Appendix

Graphical model analysis: Shadow displacement & size change for depth

Frame of reference issues in cue integration (Schrater, & Kersten, 2000).

Earlier we looked at a simple graph for cue integration and showed how a optimal estimate (for the 
Gaussian case), say for depth, was a weighted combination of the estimates for the individual cues. The 
weights were determined from the relative reliabilities of the cues.
But a close examination of the generative models that result in multiple cues can show a more complex 
set of dependencies. 

This has an impact on the architecture for optimal inverse inference--whether the algorithm can be 
broken into distinct modules or not. The non-modular case below is an example of what Clark and 
Yuille called "strong fusion". This is  related to the notion of "cooperative computation" discussed 
earlier in Lecture 23 on perceptual integration.
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This has an impact on the architecture for optimal inverse inference--whether the algorithm can be 
broken into distinct modules or not. The non-modular case below is an example of what Clark and 
Yuille called "strong fusion". This is  related to the notion of "cooperative computation" discussed 
earlier in Lecture 23 on perceptual integration.

Let's take a look at a specific case involving size  and shadow position as cues for an object's 3D posi-
tion in space.

The figure below shows some of the relationships between the data (shadow position β, size of the 
target square is a--not shown), and unknown parameters to be estimated (z, rs) of interest, (the unit-
less parameter, z/ rb is not shown), and unknowns to be integrated out (α, s,  rb--depending on the 
task).

When we perceive a change in depth, what variable does perceived depth correspond to? Here are three 
possibilities: relative (unit-less) distance zr/rb, depth from the observer, rs, and distance from the 
background z. 
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Paul Schrater worked through the math and showed that these different assumptions about depth 
representation produced different generative models for producing the image size a, and shadow 
position, β.

Fisher information is the asymptotic variance of the estimator, so can be used to calculate a weighted 
linear combination (an optimal estimator for the modular case).
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The shadow cue is most reliable when the target object is close to the background. But the size cue is 
most reliable when the target is close to the viewer. To date, there have been no systematic experimen-
tal studies of this general theoretical prediction.

Bottom line

Optimal estimators for depth depend critically on the representation of depth. Different representa-
tions result in different generative models, and thus different modular structures for  optimal inference. 
Human judgments of closeness may be better predicted by a model that represents depth from the 
observer, rather than relative depth from the background, in either absolute (e.g. metric) units, or 
relative units. More experimental work is needed.
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